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1. Introduction
In this supplementary material, we cover the following

topics:

1. In Section 2, we describe the hardware setup used for the
experiments in the paper.

2. In Section 3, we provide the implementations details of
the proposed method, including the mask processing for
visual hull baseline implementation, the effect of man-
ual mask refinement, and the effect of initial shape. We
also provide the algorithm for the implementation and
discuss the limitation regarding transparent objects.

3. In Section 4, we show supplemantary results, including
full results with visual hull, and the comparison to Ner-
fies.

2. Hardware
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Figure 1. Prototype.

Figure 1 shows our
hardware prototype used
for the the experiments in
the paper, comprising an
RGB camera (FLIR Black-
fly S BFS-U3-200S6C)
and four triangular mir-
rors (Edmund Optics
46-656 customized). The
mirrors are coated with
metal, with the size of
200mm×307mm and the
surface flatness of 4− 6λ.

3. Implementation Details
Mask processing for visual hull. For the implementation
of the baseline visual hull [4], we dilate the input mask to
handle the false background pixels caused by the incorrect
masking or the gap between mirrors. Figure 2 shows the
visual hull results with different dilations. We use 8 pix-
els of dilation for the baseline results used in comparisons,
and conservatively use 16 pixels of dilation ignoring mirror
boundary for obtaining Hvh

x for the visual hull constraint.
The voxel resolution of the visual hull is 128 on each axis.
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Figure 2. Mask processing for the baseline method (kaleido-
scopic visual hull [4]). We dilate the input mask to compute the
visual hull to handle the incorrect masking and the gap between
mirrors.

(a) Auto mask (b) Manual mask
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Figure 3. Effect of manual mask refinement. (a) Mask auto-
matically generated from the difference between the images with
and without the object. (b) Mask additionally refined using Adobe
Photoshop manually.

Manual mask refinement. We obtain the input mask first
by computing the difference between the images with and
without the object, and then manually refining the mask us-
ing Adobe Photoshop for correcting some pixels. Figure 3
shows the effect of the manual mask refinement. Although
they provide similar results overall, the manual refinement
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(a) Sphere initialization (b) Visual hull initialization
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Figure 4. Effect of initial shape. We observe the initial shape
(i.e., approximate unit sphere or visual hull) does not affect to the
final shape significantly.

provides better results in the regions where the difference
between the images with and without the object is not clear
(e.g., the tail of Toy).

Initial shape. We use an approximate unit sphere as an
initial shape [1] in the experiments. Figure 4 shows the ef-
fect of the initial shape by comparing the result with another
initialization obtained by fitting the SDF to the visual hull
using IGR [2]. We observe the initial shape does not affect
to the final shape significantly.

Algorithm. Algorithm 1 shows how the points are se-
lected and used for the optimization in the proposed neural
kaleidoscopic space sculpting.

Limitations regarding transparent objects. We discuss
the challenges in reconstructing transparent objects or ob-
jects with refraction and reflection effects. Reconstruc-
tion of such objects is challenging for many 3D recon-
struction techniques that need to establish correspondences
across viewpoints, and not just ours. Compared to non-
kaleidoscopic techniques, our kaleidoscopic method further
needs the assumption that the object is opaque in order to
be able to establish unique correspondences between each
pixel and a single virtual camera (i.e., a unique label for
each pixel).

Algorithm 1: Neural kaleidoscopic space sculpting
Input: Kaleidoscopic image I and mask M
Output: Neural network θ, ϕ for shape and texture
Initialize Pcarve = ∅, Pmodel = ∅;
for b = 0 : B∅

x do
for x ∈ Xbatch do

Compute intersection b/w rbx(t) and f(·; θ);
if M(x) = 0 then

// BG (Eq.(14))

Pcarve ← Pcarve ∪ Pbg
x ;

else
// FG ((Eqs.(17-19)))

Pmodel ← Pmodel ∪ P fg,nh
x − Povh

x ;
Pcarve ← Pcarve ∪ Povh

x ;
Ptex ← Ptex ∪ P fg,h

x ;
end

end
end
Update θ and ϕ with loss(θ, ϕ;Pcarve,Pmodel,Ptex);
Repeat with different batches;

(b) Ours(a) Nerfies
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Figure 5. Comparison to Nerfies [3]. The surface extracted from
Nerfies is distorted as the deformation of the dynamic object is not
correctly estimated.

4. Supplementary results

Nerfies surface extraction. Figure 5 provides a compar-
ison to Nerfies [3] with surface results as well as the ren-
dering results. The Nerfies surface is obtained by creating
an isosurface from the multi-view depth map results. We



(a) Kaleidoscopic image (d) Ground truth(b) Visual hull (c) Ours

Figure 6. Comparison to visual hull [4] on synthetic data.

(a) Kaleidoscopic image (b) Visual hull (c) Ours

Figure 7. Comparison to visual hull [4] on real data.

observe the shape of the monkey and the branch are dis-
torted, which is because the Nerfies could not capture the
deformation of this dynamic object correctly.

Comparison to kaleidoscopic visual hull. Figures 6
and 7 show the comparison to the baseline method of kalei-
doscopic visual hull [4] for the synthetic and real data, re-
spectively. We observe the proposed method produces su-
perior results than the baseline method.

Full results. Figure 8 shows our full results with the com-
parison to kaleidoscopic visual hull [4] for all target objects.
The visual hull produces an approximate shape of the object
but cannot capture the details of the object (e.g., the face of
the bust Venus). It also cannot produce a reasonable shape
when the input image does not contain enough background
pixels (e.g., Chair). Please zoom in to see the differences.
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(a) Photograph (b) Label map (d) Shape reconstruction (e) Rendering
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(c) Visual hull

Figure 8. Full results. Please zoom in to see the differences.
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